Mechanisms of abiotic stress responses and tolerance in plants: physiological, biochemical and molecular interventions (2024)

Abiotic stresses such as drought (water deficit), excessive watering (water-logging/flooding), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity negatively impact growth, development, yield and seed quality of crop and other plants. Similarly, large ...

Abiotic stresses such as drought (water deficit), excessive watering (water-logging/flooding), extreme temperatures (cold, frost and heat), salinity (sodicity) and mineral (metal and metalloid) toxicity negatively impact growth, development, yield and seed quality of crop and other plants. Similarly, large losses of grain yields in plants occur as a result of pathogen attack, in particular during vulnerable stages of grain development and germination. In addition, the predicted scarcity of fresh water implies that the intensity of abiotic stresses will increase. Hence, there is an urgency to develop crop varieties that are resilient to abiotic stresses to ensure food security and safety for many years to come. Progress acquired via breeding to develop abiotic stress-tolerant crops is slow due to multigene origins of plant adaptive responses and involvement of complex genetic mechanisms. For plants to survive under stress conditions, they have evolved complex mechanisms to perceive external signals that allow plants to respond to changing environmental conditions. These mechanisms include stress perception, signal transduction, transcriptional activation of stress-responsive target genes, and synthesis of stress-related proteins and other molecules, which assist plants to cope with adverse environmental conditions through biochemical and physiological manifestations.

Importantly, understanding the connection between a plant initial stress response and downstream events to adjust to altered conditions is one of the grand challenges in plant biology. Intensive research over the last decade has gradually unravelled the mechanisms that underlie how plants cope with abiotic stresses, but many aspects remain unresolved. The complete understanding of physiological, biochemical and molecular responses and tolerance mechanisms, and identification of potential unknown stress-responsive pathways and genes in abiotic plant stress tolerance will contribute to better understanding of underlying molecular mechanisms. Discoveries of novel genes and pathways, analyses of expression patterns and the determination of function of genes during abiotic stress adaptation will provide the basis for effective engineering strategies with the aim to enhance abiotic stress tolerance of crop plants. The new knowledge acquired through this research will help in the application of stress responsive determinants and in engineering of plants with enhanced tolerance to abiotic stresses.

In this Research Topic, we intend to incorporate the contributions from leading plant scientists focusing on a variety of abiotic stress tolerance mechanisms using physiological, biochemical, molecular, structural and systems biology approaches. Authors are invited to submit original research, reviews/mini reviews, methods and opinion articles related to, but not exclusively limited to, for the following topics:
oResponses of plants to abiotic stresses from gene to a whole plant level
oMechanisms of abiotic stress responses and tolerance
oContributions of novel pathways and genes in modulating abiotic stress tolerance
oPhysiological, biochemical and molecular studies of plant responses to abiotic stresses
oStress perception mechanisms and stress downstream gene activation
oComparisons of stress conditions revealing general and stress-specific mechanisms
oDescriptions and roles of stress-responsive genes, proteins and transcription factors
oTranscriptional regulons at the plant level in response to abiotic stresses
oMarker assisted selection towards generating abiotic stress-tolerant crop plants
oGenetic engineering and genome editing for abiotic stress tolerance
oBiotechnological approaches to study abiotic stress

Mechanisms of abiotic stress responses and tolerance in plants: physiological, biochemical and molecular interventions (1)

Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Mechanisms of abiotic stress responses and tolerance in plants: physiological, biochemical and molecular interventions (2024)
Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 6230

Rating: 5 / 5 (70 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.